
International Journal of Theoretical Physics, Vol. 43, Nos. 7/8, August 2004 ( C© 2004)

Note on Jordan Groupoids

Frantis̆ek Katrnos̆ka1

This paper is a continuation of a previous article by the author (Katrnos̆ka, F., 1995, In-
ternational Journal of Theoretical Physics, 34(8), 1501–1505). It contains some further
results that concern the left and right Jordan groupoids. An investigation is presented of
the relation between the rings with identities and their corresponding left (right) Jordan
groupoids. Orthoposets give examples of Jordan groupoids, hence the results obtained
may find an application in the foundation of quantum theory.
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1. INTRODUCTION

Let R be an associative ring with identity 1 and let U (R) be the set of all
idempotents of the ring R. Suppose that R is a ∗ring. An idempotent p ∈ R is said
to be a projector of R, if p = p∗. Let us define P(R) as the set of all projectors of
the ∗ring R. On the sets U (R) resp. P(R) we can define binary operations ◦ and �

as follows:

p ◦ q = (1 − 2q)p(1 − 2q)

p � q = (1 − 2p)q(1 − 2p)

if p, q ∈ U (R) (resp. p, q ∈ P(R)). Remember that if R is a ring with identity.
1 and if p ∈ U (R), then the element a = 1 − 2p is invertible and a−1 = 1 − 2p
(See Katrnos̆ka, 1993). The sets U (R) and P(R) always contain the elements
0, 1 and certainly also p′ = 1 − p ∈ U (R) whenever p ∈ U (R) (resp. p′ when-
ever p ∈ P(R)). The groupoids U (R) resp. P(R) are in general nonassocia-
tive, noncommutative with respect to the operations ◦ and �. Nevertheless, both
groupoids are elastic, i.e., they fulfil the conditions (p ◦ q) ◦ p = p ◦ (q ◦ p), resp.
(p � q) � p = p � (q � p), where p, q ∈ U (R), resp. p, q ∈ P(R). There exist
mutual relations between the homomorphisms of the rings with identities and the
corresponding left (right) Jordan groupoids.
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2. THE LEFT AND THE RIGHT JORDAN GROUPOIDS

We formalize now the whole situation and give at first the definitions of the
left and the right Jordan groupoids. We show also some of their properties.

Definition 2.1. (Katrnos̆ka, 1993). A nonempty set X is said to be a left Jordan
groupoid if there is a binary operation ◦ : X × X → X and a unary operation
′: X → X (orthocomplementation on X ) such that the following conditions are
satisfied.

(i) p ◦ p = p, p ∈ X ,
(ii) (p ◦ q) ◦ p = p ◦ (q ◦ p), p, q ∈ X ,

(iii) (p ◦ q) ◦ q = p, p, q ∈ X ,
(iv) (p′)′ = p, p ∈ X ,
(v) (p ◦ q)′ = p′ ◦ q ′, p, q ∈ X ,

(vi) p ◦ q ′ = p ◦ q , p, q ∈ X ,
(vii) X contains elements 0, 1 ∈ X such that p ◦ 1 = p ◦ 0 = p, 1 ◦ p = 1,

0 ◦ p = 0, and 0′ = 1, p ∈ X

Definition 2.2. A nonempty set X is said to be a right Jordan groupoid if there
exists a binary operation � : X × X → X and a unary operation ′ : X → X such
that the following conditions are satisfied.

(i) p � p = p, p ∈ X ,
(ii) (p � q) � p = p � (q � p), p, q ∈ X ,

(iii) q � (q � p) = p, p, q ∈ X ,
(iv) (p′)′ = p, p ∈ X ,
(v) p′

� q ′ = (q � p)′, p, q ∈ X ,
(vi) q ′

� p = q � p, p, q ∈ X ,
(vii) X contains elements 0, 1 ∈ X such that, for each p ∈ X, p � 1 = 1, p �

0 = 0, 1 � p = 0 � p = p, and 0′ = 1

Both above-introduced groupoids were called by me Jordan groupoids be-
cause then they fulfil the Jordan condition, (see Katrnoška, 1999),

(p ◦ p) ◦ (q ◦ p) = ((p ◦ p) ◦ q) ◦ p p, q ∈ X.

We exhibit now an example of a left and of a right Jordan groupoid.

Example 2.1. Let R be an associative ring with identity and let U (R) be the set of
all idempotents of the ring R. The operations ◦ and � on U (R) are defined by setting

p ◦ q = (1 − 2q)p(1 − 2q), p, q ∈ U (R)

p � q = (1 − 2p)q(1 − 2p), p, q ∈ U (R)
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As an orthocomplement p′ of p ∈ U (R) we take the element p′ = 1 − p. Of
course, p′ ∈ U (R). It is possible to show that (U (R), ◦, 0, 1, ′ ) is a left Jordan
groupoid and (U (R), � , 0, 1, ′ ) is a right Jordan groupoid.

The mutual relation between the left and the right Jordan groupoids
(X, ◦, 0, 1, ′) and (X, � , 0, 1, ′) is given as follows:

Proposition 2.1. Let (X, ◦, 0, 1, ′ ) be a left Jordan groupoid. Let us define a bi-
nary operation � : X × X → X by p � q = q ◦ p, p, q ∈ X. Then (X, � , 0, 1, ′)
is a right Jordan groupoid.

The proof is easy.
In the following proposition the necessary and sufficient condition for asso-

ciativity of the left Jordan groupoid is given.

Proposition 2.2. Let (X, ◦, 0, 1, ′) be a left Jordan groupoid. Then (X, ◦, 0, 1, ′)
is associative iff p ◦ q = p for each p, q ∈ X.

Proof: The condition is necessary: Let (X, ◦, 0, 1, ′) be an associative left Jordan
groupoid. According to (i) and (iii) of the Definition we have p ◦ q = p ◦ (q ◦ q) =
(p ◦ q) ◦ q = p if p, q ∈ X . The condition is sufficient: Suppose that
p ◦ q = p for all p, q ∈ X . Then (p ◦ q) ◦ r = p ◦ r = p = p ◦ (q ◦ r ) if r ∈ X .
Therefore (X, ◦, 0, 1, ′) is an associative left Jordan groupoid. �

Analogously the right Jordan groupoid (X, ◦, 0, 1, ′) is associative iff
p � q = q for each p, q ∈ X .

Lemma 2.1. Let R be an associative ring with identity and let (U (R), ◦, 0, 1, ′)
be the left Jordan groupoid of all idempotents of the ring R. Suppose that pq = qp
if p, q ∈ U (R). Then it follows

(i) pq ∈ U (R) if p, q ∈ U (R)
(ii) p ◦ q = p if p, q ∈ U (R).

Proof:

(i) Let p, q ∈ U (R). Then (pq)2 = p2 · q2 = pq and pq ∈ U (R).
(ii) If the elements p, q are mutually commutative (p, q ∈ U (R)), then

p ◦ q = (1 − 2q) ◦ p ◦ (1 − 2q) = p − 2pq − 2qp + 4qpq = p.

�

Notice that if R is an associative, commutative Boolean ring (Birkhoff, 1973)
then U (R) = R and (R, ◦, 0, 1, ′) is an associative left Jordan groupoid.
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Definition 2.4. Let (X, ◦, 0, 1, ′) be a left Jordan groupoid. The set Y is said to be
a left Jordan subgroupoid of (X, ◦, 0, 1, ′) if Y ⊂ G and if Y is closed with respect
to the operation ◦ and orthocomplementation of X . The set Y must contain the
element 1. The subgroupoid of the right Jordan groupoid is defined analogously.

Definition 2.5. (Katrnos̆ka, 1999). Let (X, ◦, 0, 1, ′) be a left Jordan groupoid.
The center C(X ) of X is the set of all p ∈ X such that p ◦ q = p for each q ∈ X .

In author’s paper (Katrnos̆ka, 1999) it is proved that the center C(X ) of the
left Jordan groupoid (X, ◦, 0, 1, ′) is an associative subgroupoid of X .

Proposition 2.3. Every left (resp. right) Jordan groupoid with at least two ele-
ments is noncommutative and not necessarily associative.

Proof: We carry out the proof only for the left Jordan groupoids. The case of
the right Jordan groupoid is analogous. According to p ◦ 1 = p, 1 ◦ p = 1(p is an
element of the given left Jordan groupoid X ). We see that for p �= 1 the axiom of the
commutativity is not valid. In order to show that the left Jordan groupoid need not
be associative we can take for example the left Jordan groupoid (P(R), ◦, 0, 1, ′).
If p, q are the elements of P(R) different from 1, then it holds p ◦ (q ◦ 1) = p,
but (p ◦ q) ◦ 1 = p ◦ q if p �= q . It need not hold in general p ◦ q = p. �

We give an example of an associative left Jordan groupoid.

Example 2.6. Let us consider the set X = {p, p′, q, q ′, . . . , 0, 1} (It is the modu-
lar ortholattice MOn, see Beran, 1995; Kalmach, 1983). If r ∈ X , then the element
r ′ ∈ X is an orthocomplement of r and it holds that (r ′)′ = r, r ∈ X and 0′ = 1.
We define the binary operation ◦ by the following condition p ◦ q = p for each
p, q ∈ X . It is possible to prove that (X, ◦, 0, 1, ′) is a left Jordan groupoid. Ac-
cording to Proposition 2.2 this left Jordan groupoid is associative and the obvious
relation 0′ = 1 is valid in X .

Proposition 2.4. Let R be a ∗ring with the identity and let P(R) be the set
of all projectors of the *ring R. Then (P(R), ◦, 0, 1, ′) is a left subgroupoid of
(U (R), ◦, 0, 1, ′).

Proof: Suppose that p, q ∈ P(R). Then

(i) (p ◦ q)∗ = [(1 − 2q)p(1 − 2q)]∗ = (1 − 2q)∗ p∗(1 − 2q)∗ = (1 − 2q)
p(1 − 2q) = p ◦ q . Therefore p ◦ q ∈ P(R).

(ii) Let us take p ∈ P(R). We have certainly (p′)∗ = (1 − p)∗ =
1 − p∗ = (p∗)′. Therefore (p′)∗ = p′ and p′ ∈ P(R).

(iii) Since 1∗ = 1 and 0∗ = 0 then 1, 0 ∈ P(R). �
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Example 2.7. (generalization of Ex. 2.6) Let (X, ≤, 0, 1, ′) be an orthoposet [1].
If we define a binary operation ◦ : X × X → X by p ◦ q = p, p, q ∈ X , then
(X, ◦, 0, 1, ′) is an associative left Jordan groupoid. The book (Birkhoff, 1973)
deals only with the theory of orthomodular lattices. Concerning different questions
of orthoposets see also Flachsmeyer (1982).

3. THE HOMOMORPHISMS OF THE LEFT (RIGHT)
JORDAN GROUPOIDS

We introduce at first some further definitions.

Definition 3.8. Let (X1, ◦1, 01, 11, ′) and (X2, ◦2, 02, 12,∗) be left Jordan
groupoids. The set (X1 × X2, ◦, 0, 1,+) in which (p1, q1) ◦ (p2, q2) = (p1 ◦1 p2,
q1 ◦2 q2), p1, p2 ∈ X1, q1, q2 ∈ X2, 0 = (01, 02), 1 = (11, 12) and (p, q)+ =
(p′, q∗) if p ∈ X1, q ∈ X2 is said to be a cartesian product of the left Jordan
groupoids X1 and X2. It is possible to prove that (X1 × X2, ◦, 0, 1,+) is always a
left Jordan groupoid.

Definition 3.9. Let (X1, ◦1, 01, 11, ′) and (X2, ◦2, 02, 12,∗) be left Jordan
groupoids. Suppose that the mapping h : X1 → X2 satisfies the following con-
ditions.

(i) h(p1 ◦1 p2) = h(p1) ◦2 h(p2), p1, p2 ∈ X1

(ii) h(p′) = [h(p)]∗, p ∈ X1

(iii) h(01) = 02

Then the mapping h is called a homomorphism of X1 into X2. A bijective
homomorphism h of (X1, ◦, 0, 1, ′) onto itself is said to be an automorphism.

We exhibit now an example of a homomorphism.

Example 3.10. Let (X1, ◦1, 01, 11, ′) and (X2, ◦2, 02, 12,∗) be left Jordan
groupoids and let (X1 × X2, ◦, 0, 1,+) be a cartesian product of the left Jordan
groupoids X1 and X2. Consider the mapping h : X1 × X2 → X2 defined by
h(p1, p2) = p2, p1 ∈ X1, p2 ∈ X2. It can be shown that h is a homomorphism
of X1 × X2 onto X2.

Further we show an example of an automorphism.

Example 3.11. Let R be a ∗ring with identity. As the left Jordan groupoid we
take (U (R), ◦, 0, 1, ′) (see Example 2.3). Define the mapping h : U (R) → U (R)
by the following manner: h(p) = p∗, p ∈ U (R). It is possible to show that h is an
automorphism of (U (R), ◦, 0, 1, ′).
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Remark 3.12. If R is an associative ring with identity 1 and if p ∈ U (R), then
the mapping h p : R → R defined by setting h p(x) = (1 − 2p)x(1 − 2p), x ∈ R,
is an automorphism of R. This automorphism fulfills the following conditions:
h p(h p(x)) = x(x ∈ R), and h p(U (R)) = U (R).

Some further connections concerning the automorphisms of rings and ortho-
posets can be found in the papers Chevalier (1993) and Pulmannová (1996).

Now we introduce the following statement (without proof): If all idempotents
of R mutually commute, then each mapping h p, p ∈ U (R) is an automorphism of
both Jordan groupoids (U (R), ◦, 0, 1′) and (U (R), �, 0, 1′).

Corollary 3.1. Let R be an associative ring with identity 1 and let p, q ∈ U (R).
If h p is the automorphism introduced in Remark 3.12, then we can also define the
binary operations ◦ and � as follows:

p ◦ q = hq (p), p � q = h p(q).

Now we introduce a further proposition which gives certain characterization
of the center C(U (R)) of the left Jordan groupoid (U (R), ◦, 0, 1, ′).

Proposition 3.5. Let (U (R), ◦, 0, 1, ′) be a left Jordan groupoid. The center
C(U (R)) of this groupoid may be expressed in the following from:

C(U (R)) = {p ∈ U (R) : (∀q ∈ U (R) : hq (p) = p)}.

Proof: It is a consequence of Definiton 2.5 and Corollary 3.1. �

Remember that automorphisms of rings and of rings with identity are very
useful and suitable notions in quantum theory investigations.

Remark that the statement “R is an associative ring with identity” means also
that R is a unitary ring (Pareigis, 1969; Semadeni and Wiweger, 1978).

Definition 3.13. A homomorphism h of a unitary ring R1 into a unitary ring R2

is said to be a unitary homomorphism if the following conditions are satisfied:

(i) h(a + b) = h(a) + h(b), a, b ∈ R1

(ii) h(a · b) = h(a) · h(b), a, b ∈ R1

(iii) h(11) = 12

Proposition 3.6. Let R1 and R2 be unitary rings and let (U (R1), ◦1, 01, 11, ′),
(U (R2), ◦2, 02, 12, ′) be the respective left Jordan groupoids of all idempotents of
the rings R1 and R2 (see Example 2.3). If h : R1 → R2 is a unitary homomor-
phism of the ring R1 into the ring R2 then the restriction h|U (R1) of the unitary
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homomorphism h to the left Jordan groupoid U (R1) is a homomorphism of the left
Jordan groupoid U (R1) into U (R2).

The proof is easy.
Similar proposition is also valid for the right Jordan groupoids. Some connec-

tions with the contents of this paper may be found in Chevalier (1993), Katrnos̆ka
(1993), and Pták, S. Pulmanová (1991).

4. CATEGORIAL CONSEQUENCES

Using Proposition 3.6 we shall show some conclusions which are formulated
using the theory of categories and functors. If K is a given category, then Ko

denotes the class all elements (objects) of the category K.

Notation Let us denote by Ri the category of all unitary rings (Pareigis, 1969)
and let us further denote by LJG (resp. RJG) the category of all left (right) Jordan
groupoids.

We can define a functor F from the category Ri to the category LJG. The
object transformation F : (Ri)o → (LJG)o assigns to each unitary ring R (i.e.,
R ∈ (Ri)o a left Jordan groupoid U (R) (i.e., U (R) ∈ (LJG)o while the morphism
transformation of the functor F assigns to each unitary homomorphism h : R1 →
R2, R1, R2 ∈ (Ri)o a homorphism h|U (R1) : U (R1) → U (R2).

The following proposition holds:

Proposition 4.7. A functor F : Ri → LJG is a covariant functor.

The proof is easy.
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